Isolation, properties and amino acid sequences of three neurotoxins from the venom of a sea snake, Aipysurus laevis.
نویسندگان
چکیده
Aipysurus laevis venom was chromatographed on CM-cellulose and Bio-Rex 70 columns. Three neurotoxic components, toxins Aipysurus laevis a, b and c, were isolated. The toxins a, b and c corresponded to 22, 33 and 21% respectively of the proteins in the original venom, and accounted for almost all the lethal activity of the venom. The three toxins a, b and c were monodisperse on disc electrophoresis at pH4; toxins a and b moved at the same velocity and c a little faster. They were monodisperse also on sodium dodecyl sulphate-polyacrylamide-disc-gel electrophoresis, giving a molecular weight of 7600. The molecular weight of toxin b estimated by gel filtration was 7000. The amino acid sequence analyses of these toxins revealed that they consisted of 60 amino acid residues and that Aipysurus laevis b was [25-methionine, 28-arginine] Aipysurus laevis a. Aipysurus laevis c was [28-lysine] Aipysurus laevis a, the tryptic peptide sequence relying on homology. The LD50 values of these toxins for 20g mice were 0.076 mug/g body wt. They inhibited the acetylcholine-induced contracture but did not affect the CKl-induced contracture of the isolated muscle.
منابع مشابه
Danger in the reef: Proteome, toxicity, and neutralization of the venom of the olive sea snake, Aipysurus laevis.
Four specimens of the olive sea snake, Aipysurus laevis, were collected off the coast of Western Australia, and the venom proteome was characterized and quantitatively estimated by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses. A. laevis venom is remarkably simple and consists of phospholipases A2 (71.2%), three-finger toxins (3FTx; 25.3%), cysteine-rich secretory proteins (CRISP; 2.5%), and tr...
متن کاملDanger in the reef proteome , toxicity , and neutralization of the venom of the olive sea snake ,
41 Four specimens of the olive sea snake, Aipysurus laevis, were collected off the 42 coast of Western Australia, and the venom proteome was characterized and 43 quantitatively estimated by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses. A. 44 laevis venom is remarkably simple and consists of phospholipases A2 (71.2%), three45 finger toxins (3FTx; 25.3%), cysteine-rich secretory proteins (CRISP;...
متن کاملPutting the brakes on snake venom evolution: the unique molecular evolutionary patterns of Aipysurus eydouxii (Marbled sea snake) phospholipase A2 toxins.
Accelerated evolution of toxins is a unique feature of venoms, with the toxins evolving via the birth-and-death mode of molecular evolution. The venoms of sea snakes, however, are remarkably simple in comparison to those of land snakes, which contain highly complex venoms. Aipysurus eydouxii (Marbled sea snake) is a particularly unique sea snake, feeding exclusively upon fish eggs. Secondary to...
متن کاملStructural-functional studies of peptides derived from a long-chain snake neurotoxin Naja naja oxiana
Introduction: The design and structural characterization of mini-proteins with a compact, folded structure provide insight into the complex architecture of proteins today and has long been a challenging issue in structural- functional studies. Alpha neurotoxins from snake venom have a distinct folded structure comprised of a disulphide core and three loops or “fingers” each of these loops are c...
متن کاملStudies on sea snake venom
Erabutoxins a and b are neurotoxins isolated from venom of a sea snake Laticauda semifasciata (erabu-umihebi). Amino acid sequences of the toxins indicated that the toxins are members of a superfamily consisting of short and long neurotoxins and cytotoxins found in sea snakes and terrestrial snakes. The short neurotoxins to which erabutoxins belong act by blocking the nicotinic acetylcholine re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 153 1 شماره
صفحات -
تاریخ انتشار 1976